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— Ru; or vice versa conversion. Hopefully a better understanding
of the details of the rather complicated sequence of reactions can
be arrived at by means of in situ high-pressure FTIR studies, which
are presently underway in our laboratories.?2
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(22) Our investigations employing mononuclear group 6B pentacarbonyl
hydride and formate derivatives as catalysts for HCO,Me production from
CO,/H, in MeOH strongly support a mechanism involving reductive elimi-
nation of formic acid from the metal center. Subsequent reactions of formic
acid with methanol provide methyl formate.
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Molecules with transition-metal-carbon multiple bonds are
being increasingly recognized as the active species in many cat-
alytic reactions.! It is important, therefore, to define the factors
that affect the reactivity of these multiple linkages. For the
metal—carbon double bond the prototype ligand is methylene, and
a mononuclear example of this ligand was first structurally
characterized in Ta(=CH,)(CH,)Cp,.?> Methylene complexes
of metals from groups 6,> 7,* and 8° also have now been observed,
but in many cases their characterization was by spectroscopic
methods at low temperatures. Studies of the reactivity of these
complexes indicate two distinct patterns of behavior. Ta-
(=CH,)(CH,)Cp, and many related molecules® contain nu-
cleophilic methylene centers, a property that has been attributed
to extremely effective Ta—C orbital overlap.” On the other hand,
cationic methylene complexes from groups 6, 7, and 8 have been
shown to contain electrophilic carbene centers.>=

We report here (i) the synthesis and X-ray crystal structure
of a low-valent methylene complex of osmium, Os(=CH,)Cl-
(NO)(PPh,), (1), in which the methylene ligand is not electro-
philic, (ii) reactions of I with various electrophilic reagents, (iii)
a demonstration that the electron-rich osmium—carbon double bond
in I can interact with an electrophilic metal-center [Au(PPh,)]*
forming an osmium-—gold u-methylene complex, and (iv) the crystal

structure of Os(CH,Aul)CI(NO)(PPhs,),.

Diazoalkanes have been extensively studied as transition-
metal-carbene precursors but the ultimate products are usually
bridging-carbene complexes.® Reaction between diazomethane
and IrCl(CO)(PPh;), led to Ir(CH,CI)(CO)(PPh;),.° Four
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Figure 1. Inner coordination sphere of Os(=CH,)CI(NO)(PPhs),
(thermal parameters for the methylene hydrogens have been set artifi-
cially small). Interatomic angles: C-Os-Cl, 126.6 (4)°; P1-Os-P2,
170.4 (1)°; C~Os-N, 118.8 (5)°; C1-Os-N, 114.6 (4)°; Os-N-0O, 155.4
(1.6)°.

Scheme I. Synthesis and Some Reactions of an Osmium
Methylene Complex (L = PPh,)!
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coordination is much less common for osmium(0) than for irid-
ium(I), and we find that diazomethane with OsCl(NO)(PPh;),!°
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(10) OsCI(NO)(CO)(PPh;),'? (1 g) is dissolved in CH,Cl, (100 mL) and
EtOH (10 mL). The solution is stirred for 10 min under O, (1 atm) while
the color changes from brown to yellow. Removal of the solvent under reduced
pressure yields a complex of stoichiometry OsCI(CO;)(NO)(PPh;), (yield 810
mg, 78%). OsCl(CO;)(NO)(PPh;), (810 mg) is dissolved in rigorously de-
gassed benzene (50 mL) with PPh; (800 mg). The solution is heated under
reflux for 5 min. Dark green crystals of OsCI(NO)(PPh;); form as the
solution cools, and further material is obtained by addition of degassed n-
hexane (yield 940 mg, 94%). OsCI(NO)(PPh;); (940 mg) is suspended in
benzene (20 mL), and an ethereal solution of CH,N, (20 mL)"? is added
dropwise. Tan-colored crystals of Os(=CH,)CI(NO)(PPh;), separate as the
reaction proceeds. Recrystallization from CH,Cl,/EtOH yields orange
crystals, 590 mg, 82%.
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Figure 2. Inner coordination sphere of Os(CH,Aul)CI(NO)(PPh,),.
Interatomic angles: P1-Os~P2, 173.9 (2)°; C-Os-Au, 52.4 (5)°; C~-
Os-N, 104.5 (7)°; N-Os-Cl, 121.0 (5)°; C1-Os-Au, 82.1 (1)°; Au-C-
Os, 85.8 (6)°; C-Au-Os, 41.8 (4)°; Os—Au-I, 156.6 (1)°; C-Au-I, 161.6
(4)°.

gives Os(==CH,)CI(NO)(PPh,),, I. I forms orange crystals, mp
209-210 °C, with good air stability. No interaction of I with
triphenylphosphine or nitrogen bases such as pyridine is detectable.
The structure of I'* is shown in Figure 1 and its reactions in
Scheme 11!

The geometry of I is very similar to Os(C-p-tolyl)CI(CO)-
(PPh;),.15  Both molecules have large C-Os~Cl angles (126.6
(4)° in I, 133° in the carbyne complex). The metal-carbon
distance, 1.92 (1) A, is comparable with that found in the osmium
vinylidene complex.!® The methylene hydrogens lie perpendicular
to the equatorial plane as expected.!’

I reacts readily with a number of electrophilic reagents as
detailed in Scheme I. In the rearrangement of IV to VI it is
attractive to postulate the cationic methylene complex [Os-
(==CH,)C1,(NO)(PPh;),]* as the reactive intermediate. This
species, by analogy with [OsCl,(NO)(CO)(PPh;),]*,!? can be
thought of as osmium(II) and hence, in this higher oxidation state
complex, the electrophilic propety of the carbene ligand returns,
and phosphine is coordinated to form VI.

Reactions of I with sulfur, selenium, and tellurium are slow,
giving examples of coordinated thioformaldehyde, selenoform-
aldehyde, and telluroformaldehyde (VIIT).'* These reactions
parallel those with the osmium-carbyne system'# and represent
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a new route to these little-studied ligands.

Likewise, PPh;AuCl'® reacts with I but adduct formation is
readily reversible. However, the Aul (IX) and [AuPPh;]* (X)
adducts are stable compounds.

Figure 2 shows the structure of IX.!* The gold iodide fragment
is indeed bridging the double bond but the interaction is weak.
Remarkably little structural reorganization accompanies this
adduct formation. The osmium—carbon bond length is 1.90 (2)
A, which does not differ significantly from the bond length in I,
and the C-Os-Cl angle is increased by only 8° upon adduct
formation.

We conclude that the reactivity of the linkage L,M=CH, is
strongly dependent on the oxidation state of the metal. Providing
the metal center is sufficiently electron rich, even in 18-electron
complexes of group 8 metals the carbene center may be nucleo-
philic.

The methylene ligand in I undergoes coupling reactions with
carbon monoxide and isocyanides, and the nature of these products
is under investigation.
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One of the major problems associated with the formation of
macrolides has been the requirement of relatively high dilutions.!
We envisioned resolving this problem by use of an isomerization
of vinyl epoxides®* such as 1 using polymerically bound transi-
tion-metal catalysts.*® Since neither the nucleophilic nor elec-
trophilic centers are unmasked until the substrate encounters an
active site on the polymer, this cyclization should be independent
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